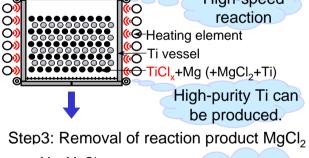
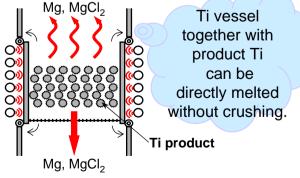
New Titanium Production Process

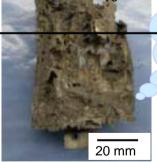

High-speed Titanium Production Process Using Titanium Subhalides Environmentally Sound Process Utilizing Titanium Scraps


High-speed Ti production process

Ti production process using Ti subhalides (TiCl_x, x = 2, 3)

$\begin{array}{l} TiCl_4(l,g) + Mg(l,g) & TiCl_{x}(s,l) + MgCl_2(l) \\ TiCl_4(l,g) + Ti(s,scrap) & TiCl_{x}(s,l) \end{array}$
$\text{TiCl}_{x}(s, l) + \text{Mg}(l, g)$ $\text{Ti}(s) + \text{MgCl}_{2}(l, g)$
Step1: Production and enrichment of TiCl _x TiCl ₄ Mg, Ti Utilization of Ti scraps MgCl ₂ -TiCl _x

Step2: High-speed reduction of TiCl_x



Features and experimental result

Comparison of Kroll process and new process

<u> </u>	•	· · ·
	Kroll process	New process
Process type	Batch-type, limited speed	(Semi-)Continuous, high-speed
Feed material	$TiCl_4(l, g)$	TiCl ₂ , TiCl ₃ (s, l)
Heat of reduction	High ($\Delta H =$ -434 kJ molTi)	Low (∆ <i>H</i> = −94 ~ −191 kJ molTi)
Reactor material	Mild steel (Iron contamination unavoidable)	Titanium (No iron contamination)
Reactor size	Large (Crush and melt)	Small (No crush and direct melt)
Flux, sealant	Not used	Ti, MgCl ₂

Common Magneephaenit reduction of chlorides the refigure of the sponge by vacuum distillation Obtained TP source of high-purity Ti with low oxygen content

New technologies for this process are under development.

Ti with 99.2% purity

was efficiently

obtained using Ti vessel.

Feasibility of new Ti production process based on the magnesiothermic reduction of Ti subhalides using Ti vessel was demonstrated.

Resource Recovery and Materials Process Engineering Laboratory

2005/11/15 Osamu Takeda 0511_011_Ti_subhalide.ppt

Okabe Lab.

Institute of Industrial Science, The University of Tokyo